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Before embarking on a discussion of second order approximations, it is
perhaps a good idea to first say a few words about the need for such approxi-
mations. To begin with, we would of course prefer to use exact results only.
However, it turns out that in statistics this is very often not feasible, which
forces us to settle for some kind of approximation. Typically such an approxi-
mation is of an asymptotic nature. Consider for example the following situa-
tion: we are interested in some characteristic of a random quantity, such as the
mean value of the performance of a particular medical treatment, or the vari-
ance of a new method for weighing items of a given type. To obtain the
desired information, we draw a sample X,...,X,, that is, we collect n indepen-
dent measurements of the quantity under consideration. From these we evalu-
ate an appropriate function T,=T,(X,,...,X,) for our purpose, which could
e.g. be testing or estimation. Then a result like:

T, is AN(u,, 07) (1)

where ‘AN’ stands for ‘asymptotically normal’ and p, and o2 are the known
mean and variance of this normal distribution, will provide us with first order
approximations to the quantities which are of interest for assessing the quality
of the procedure we use. For an estimator this could be its variance and for a
test its size and power (which stand for the probability of rejecting the null
hypothesis when it is true and when it is not true, respectively). To be just
slightly more precise, (1) can be stated equivalently as

1. This paper was presented at a meeting organized by the Mathematics Department of the
University of Leiden on the occasion of the honorary degree in mathematics which was awarded
by this University to Professor Erich L. Lehmann on February 8, 1985.
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where @ stands for the standard normal distribution function. Establishing a
second order approximation now entails replacing the ‘(1) in (2) by ‘some-
thing better’. (You see that technicalities are ruthlessly estimated!) A first
obvious advantage of this additional effort will be that the numerical approxi-
mations will typically improve.

The approach above is rather single-minded in the sense that one single
statistic at a time is considered. Usually, we are interested not in a particular
statistic, but in a particular statistical problem, for which as a rule several
statistics present themselves as possibilities on which to base the solution.
Moreover, quite often several of these candidates are first order equivalent.
That is, the same result (2) (with the same p, and o, ) holds for all of these
statistics. At first sight, this looks delightful: as long as the good choices are
equivalent, it does not matter much which one we pick. However, the same
objection as above applies: the equivalence holds to first order only and the
finite sample behaviour of the statistics may (and in fact often does) differ
quite a bit.

It is to this problem that Professor LEHMANN, together with Professor
HODGEs, drew attention with admirable clarity in his 1970 paper in the Annals
of Mathematical Statistics with the concise title ‘Deficiency’. We shall now
briefly review the main idea and some illustrative simple examples from this
paper. Suppose we are given two statistical procedures 4 and B for a certain
statistical problem. For simplicity of presentation, let us assume that it is
known beforehand that A4 is the better of the two. For each n = 12,... , we
can determine the number k of observations which is needed by the poorer
procedure B to match the performance (e.g. reach the same power or the same
variance) of procedure A when based on n observations. Clearly k = n, and
since it will depend on n, we shall denote it by k,. Typically, people have been
studying the behaviour of the ratio

n

= k, > (3)

which is called the relative efficiency of B with respect to (wrt) 4. Quite often

it can be shown that e, tends to a limit e, which is called the asymptotic rela-

tive efficiency (4RE) of B wrt A. Now HODGEs and LEHMANN point out that

it would be more natural to study the difference k, — n, rather than the ratio in

(3). They call this difference, which is nothing but the additional number of

observations required by the poorer procedure, the deficiency d, of B wrt A.

And in analogy to the above, its limit d, if it exists, is called the asymptotic
deficiency of B wrt A.

Note that this discussion is a bit deceptive in the following sense: it may be
true that a difference is more natural to study than a ratio, but it is also true
that it is more difficult to handle. In fact, first order results like (2) suffice to
evaluate e, and e, but for d, and d second order approximations are required.



Consequently, before going on, it makes sense to figure out in which cases
efficiencies suffice and in which cases the additional effort involved in obtain-
ing deficiencies is worthwhile. A situation of the first kind arises when e < 1.
Then it is already clear which of the two procedures is superior and informa-
tion on d, is at most useful to improve the numerical approximation. If e=1,
however, the opposite situation occurs. Then the two procedures are first
order equivalent and d, (and possibly d) are vital in finding out which of the
two is best, and by how much the poorer one falls short of the better one.
Hence in what follows we shall concentrate on cases where e = 1.

A first, very simple example, is the following. Let X,...,X, be a sample from
an unknown distribution function F with mean § and variance o%. To estimate
o, two obvious estimators are available:
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where X=n""! > X;. Clearly if £ is known, we should use the first, and if § is
i=1

unknown, we should use the second estimator. Quite often, however, we are
somewhat ‘in between’: a value of £ is available, but its reliability is not above
all suspicion. Using M, if the value of £ is false can be disastrous; using M," if
the value happens to be correct is a bit wasteful. Consequently, it is a robust-
ness question we are facing: what is the price we may have to pay for the pro-
tection afforded by using M, rather than M,?

This question can be nicely answered by using the deficiency concept. It
turns out that the variances V, and V¥, of the unbiased estimators in (4) equal

V=o'l , py=gt X _DE2 5)
n n(n—1)

where y=(us / 6*)— 1, with py the fourth central moment of F. By elementary

computations it follows from (5) that e=1 (hence we indeed have the interest-

ing case of first order equivalence!) and moreover that d, tends to a finite limit

d== . (6)

If F=®, we have that y=2, and thus one additional observation is all we have
to pay for the robustness in the normal case. This is not such a big surprise
after all, since the estimators in (4) are in that particular case following X2-
and x2 ,-distributions, respectively. But (6) holds true in general. In practice
F will quite often be slightly heavier-tailed than the normal, which results in
y > 2 and therefore in a value of d which is less than one. Incidentally, a pos-
sible interpretation of such a broken value of 4 can for example be provided
by means of stochastic interpolation: use n + 1 observations with probability 4
and n observations with probability 1 — d.

A second elegant example, also taken from the ‘Deficiency’ paper, is con-
cerned with a related problem. Again X|,...,X, is a sample from a distribution
with mean ¢ and variance o, but here we assume the distribution to be



normal. Instead of estimators we are now going to compare two test statistics.
The testing problem involved is the classical Hg:£=0 against H:£>0. We can
either use the test based on the sample mean X or Student’s -test. In the first
case we reject if
n"X
¢

=>u, =0 '(1-a), )]

with a the size of the test. In the latter case we reject if
n"X
(M,)*

las ®)

where M,’ is as in (4) and ¢, is the upper a-point of the t-distribution. Note
the analogy to the first example, the only difference being that the role of £
and ¢ has been interchanged. Hence the issue now is whether we should rely
on possible information about ¢ or use the r-test all the time. Again a nice
answer is provided by the application of deficiencies. HODGEs and LEHMANN
demonstrate, using an elegant conditioning argument, that not only e = 1 but
that the deficiency tends to the finite limit

d=—— > (9)

with u, as in (7). For « = 0.01, 0.025 and 0.05 respectively, this leads to d=
2.706, 1.921 and 1.353, respectively. Hence a very moderate number of addi-
tional observations suffices to achieve the desired robustness against deviations
of o. Of course these results are of an asymptotic nature, but it has also been
demonstrated for this example that already for sample sizes as small as n = 4
and 8 a beautiful agreement with the exact values exists.

Summarizing the above, we can conclude that HODGEs and LEHMANN have
made a very nice point in their paper and have done so with great clarity. But
this is by no means the end of the story. Even more important perhaps is the
fact that their paper has stimulated a lot of further research. The authors
encouraged this development by stating a number of questions at the end of
their paper. Now it is well known that one fool may ask more than ten wise
men can answer, but fortunately in this case two wise men have apparently
succeeded in coming up with such questions that it has turned out worthwhile
rather than foolish to try to answer them!

In the remainder of this paper we shall take a look at some of these ques-
tions and try to give an impression of what progress has been made in finding
answers. The general background of the questions is more or less the following.
As we have seen, the evaluation of deficiencies requires second order approxi-
mations. In a number of non-standard areas the derivation of such approxima-
tions presents serious technical difficulties. These have to be overcome before
the often quite interesting application to deficiencies can be made.

The first question we consider is of the following nature. As we saw in (9),
the asymptotic deficiency d, x of the r-test wrt the X-test is finite and equals



u% /2. What happens if we do not stop at scale invariance but in addition
require distribution-freeness? For example, would the asymptotic deficiency
dys.., of the normal scores test, which is the best rank test for the normal case,
wrt the r-test be finite? And if not, at what rate would the deficiency tend to
infinity? Note that this is a ‘good’ question in the sense that ey, is known to
equal 1. This itself came as a bit of a surprise originally, as people at first used
to think of rank tests as ‘quick-and-dirty’ methods, which probably sacrificed a
lot of efficiency in exchange for their ease of application. Now that we know
that this is not the case, at least to first order, we become eager for more and
hope to show that the loss incurred is small to second order as well.

The second question is of a similar spirit: can rank tests be concocted which
are second order equivalent wrt their parametric competitors, i.e. which have
d = 0? Finally the third question we shall consider is about the relationship
between tests and estimators. Suppose that for a problem two test statistics T’
and T, are given and that each of these statistics gives rise to an estimator, say
6, and 6,, respectively, for the parameter of interest. Then it is well-known
that typically the efficiency results for tests and estimators coincide, i.e. that

eTIvTZ :ebl-az " (10)

The question then is whether a result like (10) also holds for deficiencies, that
is, will dr 7 =dj 5 also be true?

As a first step towards answering the first question, we shall indicate the
nature of the difficulties that arise here. For a first order approximation we
saw in (1) and (2) that an asymptotic normality result is needed. In the classi-
cal case of sums of independent random variables this is provided by the cen-
tral limit theorem. The extension to second order is made by using Edgeworth
expansions. To rank tests, and to distributionfree tests in general, these stan-
dard results cannot be applied. As is well known, quite a lot of effort has been
devoted to obtaining asymptotic normality results for these cases. Hence it will
come as no surprise that considerably more obstacles still have to be elim-
inated before second order approximations become available in this area. Here
however we shall be content with noting that such approximations have indeed
become available and we shall, ignoring all technicalities involved, concentrate
on the results. At first sight, the result is discouraging: it turns out that the
asymptotic deficiency dys.,=oo. However, it can in addition be shown that
the deficiency satisfies

(dnscdn ~ Y2 loglogn, (11

which for all practical purposes is finite (and almost constant). Hence rank
tests do live up to optimistic expectations to second order as well: the amount
by which their performance falls short of that of their parametric counterparts
is indeed enjoyably small. Incidentally, it is also possible to have a finite
asymptotic deficiency. For example in the logistic case we have Wilcoxon’s
signed rank test as the optimal rank test and its asymptotic deficiency with
respect to the optimal parametric test for the logistic case is indeed finite.



Next we have the related question about the possibility of rank tests with
d = 0. In this connection we make the following reexamination of the forego-
ing. In the normal case we started out with the X-test, which is the best
parametric test. From there we went to the -test, which is the best scale invari-
ant test for the normal case. Then we decided to buy ourselves in addition dis-
tributionfreeness, and we moved on to the normal scores test, which, as noted
before, is the best rank test for the situation at hand. Note now that this last
step can be judged to be larger than strictly necessary. If we want the test to
be distributionfree, we should perhaps look for the best distributionfree test,
and not immediately restrict ourselves to rank tests, Indeed it turns out that
such an intermediate possibility exists in the form of the best permutation test.
The surprising result now is that the asymptotic deficiency dp, of this best per-
mutation test wrt the r-test satisfies

dp,=0. (12)

Hence once the price d,‘}=u,,,2 / 2 for scale invariance has been paid, no addi-
tional charge is involved to obtain distributionfreeness! Of course, besides
forming some kind of answer to the second question, this result is more amus-
ing than useful. In practice, people will probably be quite willing to pay the
further price given in (11) to buy themselves in addition the ease of application
of a rank test.

The answer to the third question simply seems to be yes. To give it a bit
more body, we shall consider an illustrative example. Let S, be the best rank
statistic based on a sample X\,...,X, from F(x —£). Then introduce §,(8)
which is the same _statistic but now_based on the shifted sample
X, —9,..,X, —0. Let 8, be such that S,(8,)=Ey,S,, then this is (ignoring
once more the technical details) the so-called Hodges-Lehmann estimator of &
(This has nothing to do with the HODGES-LEHMANN ‘Deficiency’ paper, but it
is simply difficult to discuss a contribution of Professor LEHMANN to statistics
without running into other such contributions!) The relation between 6, and
the rank statistic is precisely the same as between the maximum likelihood esti-
mator 8, and the parametric counterpart T, of S,. We already know that

€g,0,=¢s,1,= 1. 13)

It turns out to be possible to show that the deficiency of é,, wrt @,, (when prop-
erly defined) agrees to first order with the deficiency of S, wrt 7, evaluated at
size @ = %. Hence if the limits involved exist, we indeed have that

dg o =ds,T, - (14)

In the above we have only considered one-sample results for rank tests.
Similar results have also been obtained for the two-sample case and for simple
linear rank statistics. Moreover, many contributions have been made to other
areas in nonparametrics as well, L-statistics for example. Nevertheless, it is
hoped that the brief sketch above has been sufficient to give an idea of the
impact of Professor LEHMANN’S work on a lot of recent research in statistics.



